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Color coherence

Space-time picture of nuclear interactions

¢ a fast-moving hadron or
nucleus can be considered
as a system of coherent
guark-gluon configurations
of very different transverse
spatial sizes.

L~1/p*x
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Color coherence

Space-time picture of nuclear interactions

¢ a fast-moving hadron or
nucleus can be considered
as a system of coherent Leotbfes:
guark-gluon configurations
of very different transverse
spatial sizes.

e a content of the state is
Lorentz-frame dependent.

e fast parton components of
the wave function are
Lorentz-contracted, while
soft ones are not.
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Coherence length

h h h Tah
High energy: the hadronic
P P = fluctuation length can become

of the order of the nuclear
radius and there will be
coherent interaction of

“Planar” diagram for double constituents of the hadron with

rescattering - Glauber model. several nucleons of the
nucleus.

Formation time of the

intermediate state . ~ (AE)™

1
T~ E T 2mpx
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Coherence length

High energy: the hadronic

P P : fluctuation length can become
of the order of the nuclear
radius and there will be
coherent interaction of

“Non-planar” diagram for constituents of the hadron with
double rescattering. several nucleons of the
nucleus.
Formation time of the
intermediate state . ~ (AE)™
1
T ~ i - 2mpX

mnp
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Nuclear shadowing

Gribov’s approach

e contribution of inelastic
diffractive scattering.

Gribov Sov.Phys.JETP 29 (1969) 483; Sov.Phys.JETP 30 (1970) 709
Abramovsky, Gribov, Kancheli Sov.J.Nucl.Phys 18 (1974) 308
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Nuclear shadowing

Gribov’s approach

e contribution of inelastic
diffractive scattering.

e space-time picture does
not correspond to
successive rescatterings of
an initial hadron in a
nucleus.

Gribov Sov.Phys.JETP 29 (1969) 483; Sov.Phys.JETP 30 (1970) 709
Abramovsky, Gribov, Kancheli Sov.J.Nucl.Phys 18 (1974) 308
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Nuclear shadowing

Gribov’s approach

e contribution of inelastic
diffractive scattering.

e space-time picture does
not correspond to
successive rescatterings of
an initial hadron in a
nucleus.

e multiparticle content of
different diagrams is given
by AGK cutting rules.

Gribov Sov.Phys.JETP 29 (1969) 483; Sov.Phys.JETP 30 (1970) 709
Abramovsky, Gribov, Kancheli Sov.J.Nucl.Phys 18 (1974) 308
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Nuclear shadowing

Enhanced diagrams

¢ soft partons from different ladders overlap and start to
interact.

e 3P and 4P vertexes are rather small.

 become important for hA (A1/3) and AB (Al/3 + B1/3)
collisions and at high energies.
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Diffractive DIS - kinematical variables
k E
lepton
Infinite momentum
frame:
2 2
«Qq°=-Q
_Q* _ Q?
* X = 2pq = @+ (p+ay

2
= = X
.6_Q2+M2_Xp

nucleon




Introduction Description of model Numerical results
[e]e] e0 [e]e]

(e]e} (e]e] e]e]
(o] (o]

Summary

Reduction of total cross section
Rescattering series

e The contribution from 1, 2. .. scatterings can be expanded

inop = 05_\1) + J'(Az)—i-. .

U(Al) = A-on,

2 do?, 2 xp,
o) = ~anA(A 1) [ FOTZ0) [y aw? | SEHEED ] (i)
min t=

Armesto et al. Eur.Phys.J.C 29 (2003) 531
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Reduction of total cross section
Relation to diffractive DIS

N M2 dMZdt

min

M do?. (Q2, Xp,
o® = —arA(A-1) / d*bT(b) / dm?2 [ QX B) 1 F& (trin)
t=0

e Fa: nuclear form factor
e Ta(b): nuclear density profile

e dM?: integration over the diffractively produced hadronic system

e M2,;,: minimal mass of produced system
o MZ..: large rapidity gap is required (x5 < 1).
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Parameterization of nuclear parton densities

H1 preliminary

NA 2
o Gluon [%ev2]
N 1
s 6.5
N r
it
; ep collisions
I 15
|
i Diffractive
i 920
A
02 04 06 08 1
D z
dey*N _ 472 0emB x F(3)
dm2dt | Q¥(QZ +M2) T 2P

H1 Collaboration, paper 980 at ICHEP2002
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Parameterization of nuclear parton densities
H1 preliminary 7RUS
Na [ Gluon ?G? V2l B o
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z
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H1 Collaboration, paper 980 at ICHEP2002 ZEUS Collaboration, PRD 67 (2003) 012007
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Parameterization of nuclear parton densities

. We assume Regge factorization and
standard parameterizations as in diffractive
physics.
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Summary

. We assume Regge factorization and
standard parameterizations as in diffractive
physics.

« Pomeron parameters: ap(0) = 1.173 and
aly = 0.26GeV 2,
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Parameterization of nuclear parton densities

. We assume Regge factorization and
standard parameterizations as in diffractive
physics.

« Pomeron parameters: ap(0) = 1.173 and
aly = 0.26GeV 2,

« we focus on the effect of gluon shadowing.
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Parameterization of nuclear parton densities

. We assume Regge factorization and
standard parameterizations as in diffractive
physics.

« Pomeron parameters: ap(0) = 1.173 and
aly = 0.26GeV 2,

« we focus on the effect of gluon shadowing.

. we put Q2 ~ 7GeV?.
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Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445

e splittings of Pomeron
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e splittings of Pomeron

e relevant for hA collisions at
high energies
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Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445
e splittings of Pomeron
¢ relevant for hA collisions at
high energies
e exact solution of the
£ Regge field theory
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Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445
e splittings of Pomeron

e relevant for hA collisions at
high energies

e exact solution of the

£ Regge field theory
ATa(b)
Sch 2 A
= ow [T G

f(x,Q2)

A [MRax 2 [ thDN ] 2
— Fa (tmin)
dM2dt |,_, "

IhN Mr%\in
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Nuclear shadowing ratio
Definition

The total hA cross section can be calculated if the total hN

cross section and the differential cross section for diffractive
production are known.
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Summary
Nuclear shadowing ratio

Definition

The total hA cross section can be calculated if the total hN
cross section and the differential cross section for diffractive
production are known.

Nuclear shadowing is studied through the ratios of cross
sections for different nuclei, defined as

B on
R(A/B) = Kﬁ




Introduction Description of model Numerical results Summary

(e]e} (e]e] oe
(e]e} (e]e] e]e]
(o] (o] 0000

Nuclear shadowing ratio

Heavy ions
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Gluon shadowing for Au.
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Nuclear shadowing ratio
Heavy ions

RS (A/D)

o
©

0.6

0.4}
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Gluon shadowing for heavy ions. Closed symbols are for xg'® =
while open ones are for xg® = 0.03.
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Comparison with other models - gluons

% 1,4:— = Armesto et.al: BFKL ladders
£ [ e NewHUING
% 12w Frankfurt et. al: Leading-twist shadowing
11 s Glauber-Gribov, x> = 0.03
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result 0.6
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Comparison with other models - gluons

experimentally
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Comparison with NMC experiment

Both theoretical results were calculated using the same model.

-
M

o NMC experiment
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---Quark shadowing
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Quark shadowing: Armesto et al. Eur.Phys.J.C 29 (2003) 531

Experimental data: NMC Collaboration Nucl.Phys.B 441 (1995) 3
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Unitarity effects in d-Au collisions

Corrections to the Glauber formula

dnAlAZ
dy

anN

= nAlAz(b)W R(A1/N)R(Az/N)

Capella, Kaidalov, Van; Heavy lon Phys. 9 (1999) 169
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Unitarity effects in d-Au collisions

Corrections to the Glauber formula

dnA A anN
T;Z = nAlAz(b) dy R(Al/N)R(AZ/N)

The theoretical prediction of the multiplicity reduction in a
deuteron gold collision compared to the predictions to the
simple Glauber model is based on the following formula

Rdaau = Rd(Xp) - Rau(Xt)

where x,1) = pre®¥ /v/s.

Capella, Kaidalov, Van; Heavy lon Phys. 9 (1999) 169
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Unitarity effects in d-Au collisions

Corrections to the Glauber formula

dnA A anN
T;Z = nAlAz(b) dy R(Al/N)R(AZ/N)

The theoretical prediction of the multiplicity reduction in a
deuteron gold collision compared to the predictions to the
simple Glauber model is based on the following formula

Raau = Ra(Xp) - Rau(Xt)

where X,y = cpre®Y’ /y/s.

Capella, Kaidalov, Van; Heavy lon Phys. 9 (1999) 169
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Unitarity effects in d-Au collisions

Normalization of experimental data
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Experimental data: BRAHMS Collaboration Phys.Rev. Lett. 93 (2004) 242303 g
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Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

We define the shadowing ratio

Ra au (1) /RGAL (0)

¢ to extract the effect on shadowing at forward rapidities
¢ to remove other type of effects
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Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

Summary

We define the shadowing ratio

Ra au (1) /RGAL (0)

¢ to extract the effect on shadowing at forward rapidities
¢ to remove other type of effects

e compare experimental data for several 's to the theoretical
predictions
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the multiplicity reduction at forward rapidity.
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correctly accounted for; no additional effects have been
added in the model.
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with experimental data is found. Gluons are responsible for
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e Dependence on Q? - DGLAP, parameterizations....
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Summary

Gluon nPDF’s are extracted from recent HERA experiment
data. At RHIC energies and above, the gluon shadowing
strongly dominates over the quark one

Estimation of reduction of particle multiplicity at forward
rapidities is compared to BRAHMS results and agreement
with experimental data is found. Gluons are responsible for
the multiplicity reduction at forward rapidity.

Agreement arises solely from the fact that unitarization is
correctly accounted for; no additional effects have been
added in the model.

Outlook

e Dependence on Q? - DGLAP, parameterizations....
e Fusion of Pomerons.
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Summary

Gluon nPDF’s are extracted from recent HERA experiment
data. At RHIC energies and above, the gluon shadowing
strongly dominates over the quark one

Estimation of reduction of particle multiplicity at forward
rapidities is compared to BRAHMS results and agreement
with experimental data is found. Gluons are responsible for
the multiplicity reduction at forward rapidity.

Agreement arises solely from the fact that unitarization is
correctly accounted for; no additional effects have been
added in the model.

Outlook
e Dependence on Q? - DGLAP, parameterizations....
e Fusion of Pomerons.
e Robustness of diffractive analysis.
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