Description of model

Numerical results

Summary

Gluon shadowing in the Glauber-Gribov model

K. Tywoniuk¹ I. C. Arsene¹ L. Bravina¹ A. B. Kaidalov² E. Zabrodin¹

¹Department of Physics University of Oslo

²Institute of Theoretical and Experimental Physics Moscow

May 17th 2006 / Hot Quarks 2006, Villasimus

・ロット (雪) ・ (日) ・ (日)

Introduction	
00	
00	
0	

Description of model

Numerical results

Summary

Introduction	
00	
00	
0	

Summary

Outline

Introduction

Color coherence phenomena Nuclear shadowing

Description of model

Reduction of total cross section Parameterization of nuclear parton densities Schwimmer unitarization model

Numerical results

Summary

(a)

Introductio
•0
00
0

Summary

Color coherence

Space-time picture of nuclear interactions

- a fast-moving hadron or nucleus can be considered as a system of coherent quark-gluon configurations of very different transverse spatial sizes.
- a content of the state is Lorentz-frame dependent.
- fast parton components of the wave function are Lorentz-contracted, while soft ones are not.

Introductio
•0
00
0

Summary

Color coherence

Space-time picture of nuclear interactions

- a fast-moving hadron or nucleus can be considered as a system of coherent quark-gluon configurations of very different transverse spatial sizes.
- a content of the state is Lorentz-frame dependent.
- fast parton components of the wave function are Lorentz-contracted, while soft ones are not.

Introductio
•0
00
0

Summary

Color coherence

Space-time picture of nuclear interactions

- a fast-moving hadron or nucleus can be considered as a system of coherent quark-gluon configurations of very different transverse spatial sizes.
- a content of the state is Lorentz-frame dependent.
- fast parton components of the wave function are Lorentz-contracted, while soft ones are not.

Introc	luction
00	
00	

Description of model

Numerical results

Summary

Coherence length

"Planar" diagram for double rescattering - Glauber model.

Formation time of the intermediate state

$$au \sim rac{E}{m_N \mu}$$

High energy: the hadronic fluctuation length can become of the order of the nuclear radius and there will be coherent interaction of constituents of the hadron with several nucleons of the nucleus.

 $I_c \approx (\Delta E)^{-1}$ $2m_N x$

イロト イ理ト イヨト イヨト

Introduction
00
00

Description of model
00
00
0

Summary

Coherence length

"Non-planar" diagram for double rescattering.

Formation time of the intermediate state

$$au \sim rac{E}{m_N \mu}$$

High energy: the hadronic fluctuation length can become of the order of the nuclear radius and there will be coherent interaction of constituents of the hadron with several nucleons of the nucleus.

 $I_c \approx (\Delta E)^{-1}$ $2m_N x$

Introc	luction
00	

•0

Description of model

Numerical results

Nuclear shadowing

Gribov's approach

- contribution of inelastic diffractive scattering.
- space-time picture does not correspond to successive rescatterings of an initial hadron in a nucleus.
- multiparticle content of different diagrams is given by AGK cutting rules.

Intro	odu	ictio	on
00			

ĕŏ

Description of model

Numerical results

Nuclear shadowing

Gribov's approach

- contribution of inelastic diffractive scattering.
- space-time picture does not correspond to successive rescatterings of an initial hadron in a nucleus.
- multiparticle content of different diagrams is given by AGK cutting rules.

(日)

Gribov Sov.Phys.JETP **29** (1969) 483; Sov.Phys.JETP **30** (1970) 709 Abramovsky, Gribov, Kancheli Sov.J.Nucl.Phys **18** (1974) 308

Intro	duction
00	
•0	

Description of model

Numerical results

Summary

Nuclear shadowing

Gribov's approach

Gribov Sov.Phys.JETP **29** (1969) 483; Sov.Phys.JETP **30** (1970) 709 Abramovsky, Gribov, Kancheli Sov.J.Nucl.Phys **18** (1974) 308

- contribution of inelastic diffractive scattering.
- space-time picture does not correspond to successive rescatterings of an initial hadron in a nucleus.
- multiparticle content of different diagrams is given by AGK cutting rules.

Introduction
00
00
0

Summary

Nuclear shadowing

Enhanced diagrams

- soft partons from different ladders overlap and start to interact.
- 3P and 4P vertexes are rather small.
- become important for hA ($A^{1/3}$) and AB ($A^{1/3} + B^{1/3}$) collisions and at high energies.

Introduction
00
00
0

Summary

Nuclear shadowing

Enhanced diagrams

- soft partons from different ladders overlap and start to interact.
- 3P and 4P vertexes are rather small.
- become important for hA ($A^{1/3}$) and AB ($A^{1/3} + B^{1/3}$) collisions and at high energies.

Introductio
00
00
0

Nuclear shadowing

Enhanced diagrams

- soft partons from different ladders overlap and start to interact.
- 3P and 4P vertexes are rather small.
- become important for hA ($A^{1/3}$) and AB ($A^{1/3} + B^{1/3}$) collisions and at high energies.

 ***	00	110	+10	n
 	00			

Description of model

Numerical results

Summary

Diffractive DIS - kinematical variables

Infinite momentum frame:

•
$$q^2 = -Q^2$$

•
$$\mathbf{X} = \frac{\mathbf{Q}^2}{2 \, \mathbf{p} \cdot \mathbf{q}} = \frac{\mathbf{Q}^2}{\mathbf{Q}^2 + (\mathbf{p} + \mathbf{q})^2}$$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

•
$$\beta = \frac{\mathsf{Q}^2}{\mathsf{Q}^2 + \mathsf{M}^2} = \frac{\mathsf{X}}{\mathsf{X}_P}$$

Numerical results

(日)

Reduction of total cross section

Rescattering series

• The contribution from 1, 2... scatterings can be expanded in $\sigma_A = \sigma_A^{(1)} + \sigma_A^{(2)} + \dots$

$$\begin{split} \sigma_{A}^{(1)} &= A \cdot \sigma_{N} ,\\ \sigma_{A}^{(2)} &= -4\pi A(A-1) \int d^{2}b T_{A}^{2}(b) \int_{M_{min}^{2}}^{M_{max}^{2}} dM^{2} \left[\frac{d\sigma_{\gamma^{*}N}^{\mathcal{D}}(Q^{2}, \mathbf{x}_{P}, \beta)}{dM^{2} dt} \right]_{t=0} F_{A}^{2}(t_{min}) \end{split}$$

Armesto et al. Eur.Phys.J.C 29 (2003) 531

Numerical results

Summary

Reduction of total cross section

Relation to diffractive DIS

$$\sigma_{A}^{(2)} = -4\pi A(A-1) \int d^2 b T_A^2(b) \int_{M_{min}^2}^{M_{max}^2} dM^2 \left[\frac{d \sigma_{\gamma^* N}^{\mathcal{D}}(Q^2, \textbf{x}_{I\!\!P}, \beta)}{dM^2 dt} \right]_{t=0} F_A^2(t_{min})$$

- F_A: nuclear form factor
- T_A(b): nuclear density profile
- dM²: integration over the diffractively produced hadronic system
 - M²_{min}: minimal mass of produced system
 - M_{max}^2 : large rapidity gap is required ($x_{I\!\!P}^{max} \ll 1$).

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Introduction
00
00
0

Parameterization of nuclear parton densities

Introduction
00
00
0

Parameterization of nuclear parton densities

H1 Collaboration, paper 980 at ICHEP2002

 $\sigma_{\gamma^*N} = \frac{4\pi^2 \alpha_{em}}{\Omega^2} F_2(\mathbf{x}, \mathbf{Q}^2)$

ZEUS Collaboration, PRD 67 (2003) 012007

Parameterization of nuclear parton densities

- we assume Regge factorization and standard parameterizations as in diffractive physics.
- Pomeron parameters: $\alpha_{\mathbb{P}}(0) = 1.173$ and $\alpha'_{\mathbb{P}} = 0.26 \text{GeV}^{-2}$.
- we focus on the effect of gluon shadowing.
- we put $Q^2 \approx 7 GeV^2$.

Parameterization of nuclear parton densities

- we assume Regge factorization and standard parameterizations as in diffractive physics.
- Pomeron parameters: $\alpha_{I\!\!P}(0) = 1.173$ and $\alpha'_{I\!\!P} = 0.26 \text{GeV}^{-2}$.
- we focus on the effect of gluon shadowing.
- we put $Q^2 \approx 7 \text{GeV}^2$.

Parameterization of nuclear parton densities

- we assume Regge factorization and standard parameterizations as in diffractive physics.
- Pomeron parameters: $\alpha_{I\!\!P}(0) = 1.173$ and $\alpha'_{I\!\!P} = 0.26 \text{GeV}^{-2}$.
- we focus on the effect of gluon shadowing.
- we put $Q^2 \approx 7 GeV^2$.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Parameterization of nuclear parton densities

- we assume Regge factorization and standard parameterizations as in diffractive physics.
- Pomeron parameters: $\alpha_{I\!\!P}(0) = 1.173$ and $\alpha'_{I\!\!P} = 0.26 \text{GeV}^{-2}$.
- we focus on the effect of gluon shadowing.
- we put $Q^2 \approx 7 GeV^2$.

Numerical results

Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445

- splittings of Pomeron
- relevant for hA collisions at high energies
- exact solution of the Regge field theory

$$\sigma_{hA}^{Sch} = \sigma_{hN} \int d^2b \frac{AT_A(b)}{1 + (A-1)f(x, Q^2)T_A(b)} ,$$

$$f(x, Q^2) = \frac{4\pi}{\sigma_{hN}} \int_{M^2_{min}}^{M^2_{max}} dM^2 \left[\frac{d\sigma^{\mathcal{D}}_{hN}}{dM^2 dt} \right]_{t=0} F^2_A(t_{min})$$

Numerical results

Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445

- splittings of Pomeron
- relevant for hA collisions at high energies
- exact solution of the Regge field theory

$$\sigma_{hA}^{Sch} = \sigma_{hN} \int d^2b \frac{AT_A(b)}{1 + (A-1)f(x, Q^2)T_A(b)} ,$$

$$f(x, Q^2) = \frac{4\pi}{\sigma_{hN}} \int_{M_{min}^2}^{M_{max}^2} dM^2 \left[\frac{d\sigma_{hN}^{\mathcal{D}}}{dM^2 dt} \right]_{t=0} F_A^2(t_{min})$$

Numerical results

Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445

- splittings of Pomeron
- relevant for hA collisions at high energies

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

 exact solution of the Regge field theory

$$\sigma_{hA}^{Sch} = \sigma_{hN} \int d^2b \frac{AT_A(b)}{1 + (A-1)f(x,Q^2)T_A(b)} ,$$

 $f(\mathbf{x}, \mathbf{Q}^2) = \frac{4\pi}{\sigma_{hN}} \int_{M^2}^{M_{max}} \mathrm{d}M^2 \left[\frac{\mathrm{d}\sigma_{hN}^D}{\mathrm{d}M^2 \mathrm{d}t} \right]_{t=0} F_A^2(t_{min})$

Numerical results

Schwimmer summation of fan diagrams

Schwimmer Nucl.Phys.B 94 (1975) 445

- splittings of Pomeron
- relevant for hA collisions at high energies

(日)

 exact solution of the Regge field theory

$$\sigma_{hA}^{Sch} = \sigma_{hN} \int d^2 b \frac{AT_A(b)}{1 + (A - 1)f(x, Q^2)T_A(b)} ,$$

$$f(x, Q^2) = \frac{4\pi}{\sigma_{hN}} \int_{M_{min}^2}^{M_{max}^2} dM^2 \left[\frac{d\sigma_{hN}^{\mathcal{D}}}{dM^2 dt} \right]_{t=0} F_A^2(t_{min})$$

Numerical results

Nuclear shadowing ratio

The total hA cross section can be calculated if the total hN cross section and the differential cross section for diffractive production are known.

Nuclear shadowing is studied through the ratios of cross sections for different nuclei, defined as

$$R(A/B) = \frac{B}{A} \frac{\sigma_{hA}}{\sigma_{hB}}$$

Introduction
00
00
0

Nuclear shadowing ratio

The total hA cross section can be calculated if the total hN cross section and the differential cross section for diffractive production are known.

Nuclear shadowing is studied through the ratios of cross sections for different nuclei, defined as

$$R(A/B) = \frac{B}{A} \frac{\sigma_{hA}}{\sigma_{hB}}$$

Introduction	
00	
00	
0	

Nuclear shadowing ratio

Heavy ions

Introduction	n
00	
00	
0	

Nuclear shadowing ratio

Heavy ions

Introduction	n
00	
00	
0	

Comparison with other models - gluons

Numerical results

Comparison with other models - gluons

ヘロト ヘ戸ト ヘヨト ヘヨト

1) Armesto Eur.Phys.J.C 26(2002)35, 2) Frankfurt et al. hep-ph/0303022, 3) Li and Wang Phys.Lett.B 527(2002)85

RHIC

10⁻³

ヘロト ヘ戸ト ヘヨト ヘヨト

Comparison with other models - gluons

1) Armesto Eur. Phys. J.C 26(2002)35, 2) Frankfurt et al. hep-ph/0303022, 3) Li and Wang Phys. Lett. B 527(2002)85 Veccor

10⁻²

Comparison with NMC experiment

Both theoretical results were calculated using the same model.

Unitarity effects in d-Au collisions

Corrections to the Glauber formula

$$\frac{dn_{A_1A_2}}{dy} = n_{A_1A_2}(b) \frac{dn_{NN}}{dy} R(A_1/N)R(A_2/N)$$

The theoretical prediction of the multiplicity reduction in a deuteron gold collision compared to the predictions to the simple Glauber model is based on the following formula

$$R_{dAu} = R_d(x_p) \cdot R_{Au}(x_t)$$

where $x_{p(t)} = p_T e^{\pm y^*} / \sqrt{s}$.

Capella, Kaidalov, Van; Heavy Ion Phys. 9 (1999) 169

Unitarity effects in d-Au collisions

Corrections to the Glauber formula

$$\frac{dn_{A_1A_2}}{dy} = n_{A_1A_2}(b) \frac{dn_{NN}}{dy} R(A_1/N)R(A_2/N)$$

The theoretical prediction of the multiplicity reduction in a deuteron gold collision compared to the predictions to the simple Glauber model is based on the following formula

$$R_{dAu} = R_d(x_p) \cdot R_{Au}(x_t)$$

where $x_{p(t)} = p_T e^{\pm y^*} / \sqrt{s}$.

Capella, Kaidalov, Van; Heavy Ion Phys. 9 (1999) 169

A D > A B > A B > A B >

Unitarity effects in d-Au collisions

Corrections to the Glauber formula

$$\frac{dn_{A_1A_2}}{dy} = n_{A_1A_2}(b) \frac{dn_{NN}}{dy} R(A_1/N)R(A_2/N)$$

The theoretical prediction of the multiplicity reduction in a deuteron gold collision compared to the predictions to the simple Glauber model is based on the following formula

$$R_{dAu} = R_d(x_p) \cdot R_{Au}(x_t)$$

where $x_{p(t)} = cp_T e^{\pm y^*} / \sqrt{s}$.

Capella, Kaidalov, Van; Heavy Ion Phys. 9 (1999) 169

A D > A B > A B > A B >

Unitarity effects in d-Au collisions

Normalization of experimental data

Numerical results

Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

We define the shadowing ratio

$R_{dAu}\left(\eta ight)/R_{dAu}^{norm}\left(0 ight)$

- to extract the effect on shadowing at forward rapidities
- to remove other type of effects
- compare experimental data for several η's to the theoretical predictions

Numerical results

Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

We define the shadowing ratio

$R_{dAu}\left(\eta ight)/R_{dAu}^{norm}\left(0 ight)$

to extract the effect on shadowing at forward rapidities

- to remove other type of effects
- compare experimental data for several η's to the theoretical predictions

Numerical results

Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

We define the shadowing ratio

 $R_{dAu}(\eta)/R_{dAu}^{norm}(0)$

- to extract the effect on shadowing at forward rapidities
- to remove other type of effects
- compare experimental data for several η's to the theoretical predictions

Unitarity effects in d-Au collisions

Nuclear modification factor at forward rapidity

We define the shadowing ratio

 $R_{dAu}(\eta)/R_{dAu}^{norm}(0)$

- to extract the effect on shadowing at forward rapidities
- to remove other type of effects
- compare experimental data for several η's to the theoretical predictions

Numerical results

Unitarity effects in d-Au collisions

NMF - results

Description of model

Numerical results

Unitarity effects in d-Au collisions

NMF - results

c = 5

- no dependence on parameter c.
- good agreement with experimental data.
- shadowing effect due to gluons more pronounced at higher rapidity.

Description of model

Numerical results

Unitarity effects in d-Au collisions

NMF - results

c = 5

- no dependence on parameter c.
- good agreement with experimental data.
- shadowing effect due to gluons more pronounced at higher rapidity.

Description of model

Numerical results

Unitarity effects in d-Au collisions

NMF - results

c = 5

- no dependence on parameter c.
- good agreement with experimental data.
- shadowing effect due to gluons more pronounced at higher rapidity.

< □ > < □ > < □ >

Introduction
00
00
0

Summary

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.
- Outlook
 - Dependence on Q² DGLAP, parameterizations....
 - Fusion of Pomerons.
 - Robustness of diffractive analysis.

Introduction
00
00
0

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.
- Outlook
 - Dependence on Q² DGLAP, parameterizations....
 - Fusion of Pomerons.
 - Robustness of diffractive analysis.

Introduction
00
00
0

Summary

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.

Outlook

- Dependence on Q² DGLAP, parameterizations....
- Fusion of Pomerons.
- Robustness of diffractive analysis.

Introc	luctior
00	
00	
0	

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.
- Outlook
 - Dependence on Q² DGLAP, parameterizations....
 - Fusion of Pomerons.
 - Robustness of diffractive analysis.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Introc	luctior
00	
00	
0	

Summary

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.
- Outlook
 - Dependence on Q² DGLAP, parameterizations....
 - Fusion of Pomerons.
 - Robustness of diffractive analysis.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

I	ntroductior
(00
(00
(0

Summary

- Gluon nPDF's are extracted from recent HERA experiment data. At RHIC energies and above, the gluon shadowing strongly dominates over the quark one
- Estimation of reduction of particle multiplicity at forward rapidities is compared to BRAHMS results and agreement with experimental data is found. Gluons are responsible for the multiplicity reduction at forward rapidity.
- Agreement arises solely from the fact that unitarization is correctly accounted for; no additional effects have been added in the model.
- Outlook
 - Dependence on Q² DGLAP, parameterizations....
 - Fusion of Pomerons.
 - Robustness of diffractive analysis.

