Statistical Hadronization phenomenology

G. Torrieri, McGill University In collaboration with S. Jeon, J. Rafelski, J. Letessier

Based on

- nucl-th/0503026 Accepted for publication, PRC
- nucl-th/0509067 (QM2005)
- nucl-th/0603026
 Submitted to Computer Physics Communications,
 open source code available at

http://www.physics.arizona.edu/~torrieri/SHARE/share.html

Statistical models: considerable phenomenological success

Plots like this shown at most workshops on the subject.

At Au-Au and p-p RHIC collisions, fitting T, μ_B , other parameters \Rightarrow a "nice-looking" plot with nearly all particles accounted for. But does this prove "equilibrium" is really there?

- We always knew soft hadronic abundances were approximately exponential. Are $T, \mu, Volume$ "real", or are they "epicycles"?
- Becattini has done thermal fits for $p-p, e^+-e^-$. Does that mean these systems are equilibrated? Or not? most points fit, some fail quite badly. but, some particle yields fail in A-A systems as well. When does true equilibration kick in?

First question: Can we <u>test</u> statistical hadronization? Fluctuations: Statistical mechanics falsifier

Statistical mechanics (in fact, <u>all</u> statistics) predicts a <u>relationship</u> between "averages" ($\langle X \rangle$) and fluctuations ($\langle (\Delta X)^2 \rangle$.

The validity of statistical mechanics is <u>founded</u> on fluctuations going to 0 in certain limits.

A good check for the <u>consistency</u> of the statistical model is fitting <u>both</u> yields and fluctuations with same parameters! And it has never been done until now!

The statistical model:

$$N = \int \mathcal{M} \prod_{i} \frac{d^{3} \vec{p_{i}}}{E_{i}} \delta_{E} \delta_{Q}$$

 $\mathcal{M} \rightarrow constant$ (dynamics \rightarrow phase space)

$$P_N = \frac{\Omega_N}{\sum_n \Omega_n} \qquad \Omega = \int \prod_i \frac{d^3 \vec{p_i}}{E_i} \delta_E \delta_Q$$

Observables:

$$< N >$$
, $\omega = \frac{(\langle \Delta N)^2 \rangle}{\langle N \rangle}$, higher comulants

calculable through partition function

Several ways of defining $\delta_{E,Q} \to \mathsf{Ensembles}$.

Ensembles , or how to deal with conservation laws $\lim_{V \to \infty}^{N/V = const} < N >$ same in \forall ensembles. not ω

Micro-canonical: EbyE conservation

$$\delta_E \delta_Q = \delta \left(\sum_i E_i - E_T \right) \delta \left(\sum_i Q_i - Q_T \right) \quad \omega_E = \omega_Q = 0$$

Canonical: Energy conserved on average Appropriate for system in equilibrium with <u>bath</u>

$$\delta_E \to \delta \left(E_T - \langle E \rangle \right) \qquad \omega_E \sim 1$$

Grand Canonical: Charge conserved on average

$$\delta_Q \to \delta \left(Q_T - \langle Q \rangle \right) \qquad \qquad \omega_E \sim \omega_Q \sim 1$$

Appropriate for detector sampling part of a fluid

Freeze-out from ideal fluid at mid-rapidity

Boost invariance: Rapidity ⇔configuration space

- Mid-rapidity ⇔system
- Peripheral regions ⇔bath

⇒ Grand Canonical ensemble needs to be used!

NB: This is an experimentally verifiable statement:

The dependance of fluctuations on yields is

Ensemble-specific (Begun, Gorenstein, Gazdzicki, Zozulya), so
an incorrect ensembe will fail to describe both

Cleymans, Redlich, PRC 60, 054908 (1999):

$$\left[\frac{dN}{dy}\right]_{b.i.} \sim < N >_{4\pi} \quad \left[\frac{d(\Delta N)^2}{dy}\right]_{b.i.} \sim (\Delta N)_{4\pi}^2$$

- All details of flow and freeze-out integrate out
- ullet Up to Normalization, $< N>, \omega$ calculable from Grand Canonical T, λ_i

$$\begin{array}{c} Ideal \;\; hydro \\ Freezeout@const. \;\; T \end{array} \right\} \begin{array}{c} Statistical \;\; model \;\; \underline{fits \;\; well} \\ < N > \;\; \underline{AND} \;\; \omega_N \end{array}$$

So lets see how the statistical model does! But which one?

Grand canonical statistical hadronization

All particles described in terms of T and $\lambda_{q,s,I3}$. Detailed balance: $\lambda_{\overline{q}} = \lambda_q^{-1}$ Integral can be done in rest-frame wrt flow using Bessel function K_2

$$\langle N_i \rangle = \lambda_i \frac{\partial \ln Z}{\partial \lambda_i} = V' \sum_{n=1}^{\infty} (\mp 1)^{n+1} \frac{\lambda_i^n}{n} F(m, nT)$$

$$\langle (\Delta N_i^2) \rangle = \lambda_i^2 \frac{\partial^2 \ln Z}{\partial \lambda_i^2} = V' \sum_{n=1}^{\infty} (\mp 1)^{n+1} \frac{\lambda_i^n}{n} C_n^{2+n-1} F(m, nT)$$
$$F(m, T) = m_i^2 T K_2 \left(\frac{m_i}{T}\right)$$

Resonance feed-down

$$\langle N_i \rangle = \langle N_i \rangle^{direct} + \sum_j b_{j \to i} \langle N_j \rangle$$

$$\Delta N_i^2 = \Delta N_i^2 + \sum_{j} \left[\underbrace{b_{j \to i} \left(1 - b_{j \to i} \right) N_j}_{Fluctuation \ of \ j \to i} + \underbrace{b_{j \to i}^2 \left\langle \left(\Delta N_j \right)^2 \right\rangle}_{Fluctuation \ of \ N_j} \right]$$

Fluctuations of quantities like $Q=N_+-N_-$ or N_1/N_2 also contain <u>correlations</u> due $j\to N_1N_2$. Lots more on this later

Chemical Equilibrium Detailed balance:

So Chemical potentials for conserved quantities

$$\lambda_i = \lambda_u^{u - \overline{u}} \lambda_d^{u - \overline{u}} \lambda_s^{s - \overline{s}}$$

Fit $T, \lambda_{q,s,I3}$ to yields and ratios $\to T \sim 165 MeV$ at upper energy SPS and RHIC

Non-Equilibrium

- A dynamically expanding system might well not be in detailed balance, especially if phase transitions are involved
- ullet Parametrize deviation from equilibrium by γ_i

$$\lambda_i \to \lambda_i^{\text{eq}} \gamma_u^{u+\overline{u}} \gamma_d^{u+\overline{u}} \gamma_s^{s+\overline{s}} \qquad \gamma^{\text{eq}} = 1$$

- Csorgo and Csernai, '94: Supercooling might necessary to conserve entropy
- ullet Rafelski, Letessier, '99: Freeze-out from Entropy-rich QGP $o T=140, \gamma_q=1.6$
- Greater strangeness at equilibrium QGP than equilibrium HG \Rightarrow Hadron gas $\gamma_s > 1$

When γ_q, γ_s put in as fit parameters, T drops to 140 MeV, γ_q rises to ~ 1.6 and γ_s to ~ 2 at SPS and RHIC. discovery of super-cooled phase transition or over-fitting?!

Third and fourth questions 2 statistical models on the market!

Equilibrium statistical model	Non-equilibrium		
Braun-Munziger, Redlich,	Rafelski, Letessier, GT		
<u>oven-like</u>	Explosion-like		
High T (~ 165 MeV)	Supercooled ($\sim 140 {\rm MeV}$)		
Equilibrium $(\gamma_{q,s}=1)$	Over-saturation $(\gamma_{q,s} > 1)$		
Staged freeze-out	Sudden freeze-out		
Resonances <u>don't</u> freeze-out	Resonances freeze-out		
at same T	at same T		
Strangeness systematics due	Strangeness systematics		
to approach to thermodynamic	due to phase transition		
$limit\;(Canonical\toGC)$	γ_s/γ_q grows		
	since more s/Q in QGP		
No info on phase transition	First order		
	or sharp cross-over		
No info on early phase	Early phase probed		

- ullet Statistical significance, the <u>probability</u> of getting χ^2 with n DoF given that "your model is true", is a quantitative measure of your fit's goodness
- ullet models with different N_{dof} can be compared
- With few DoF, "nice" looking graphs can have a very small statistical significance.
- It is said that you can fit an elephant with enough parameters. Maybe so, but if you are honest, you won't get a good statistical significance.

Non-trivial correlations/data-point sensitivity can be analyzed by Profiles in statistical significance

All other parameters at their best fit value for point in abscissa

Let's apply this to $\gamma_q!$ (Letessier and Rafelski, nucl-th/0504028)

ullet Maximum for SPS and RHIC is at $\gamma_q > 1$, suggesting this is probably not over-fitting

$$\begin{array}{l} - \ \left(\frac{\gamma_s}{\gamma_q}\right)_{\gamma_q > 1} > \left(\frac{\gamma_s}{\gamma_q}\right)_{\gamma_q = 1} \Rightarrow \text{More } \frac{\Lambda}{p}, \frac{\Xi}{\Lambda}, \frac{\Omega}{\Xi} \\ - \text{Lower T} \Rightarrow \text{less resonances } \underline{\text{agrees with Experiment}} \end{array}$$

- But equilibrium <u>not</u> ruled out!. T and γ_q strongly correlated, making their individual determination difficoult

We need this guy:

ie, further data...

- That one EXPECTS statistical models to describe
- That is capable of determining γ_q , T, post-emission reinteraction.

Yields and Fluctuations: Non-equilibrium

T increase $\Rightarrow \pi$ Fluctuations decrease because of enhanced resonance production Resonances affect correlations

over-saturation ($\gamma_q > 1$) $\Rightarrow \pi$ Fluctuations increase faster than yields because of BE corrections

$$\gamma_q^2 e^{m_\pi/T} = 1 - \epsilon \Rightarrow \frac{\langle N_\pi \rangle}{V} \sim \epsilon$$
 $\frac{\langle (\Delta N_\pi)^2 \rangle}{V} \sim \epsilon^2$

 $\gamma_q > 1$ affects fluctuations

A small problem: Volume fluctuations are not well understood, and show up in all $< N^2 > - < N >^2$. Avoid them choosing observables such as

- $(\Delta Q)^2$. $\frac{\langle Q \rangle}{V}$ small, so is $\Delta V \frac{\langle Q \rangle}{V}$ (Jeon, Koch)
- $\underline{\mathsf{fit}}\ \big\langle (\Delta V)^2 \big\rangle$
- $\begin{array}{l} \bullet \;\; \underline{ \; undestand } \; \left< (\Delta V)^2 \right> \\ (\mathsf{KNO} \; \mathsf{scaling} : (\Delta V)^2 \sim < V > \text{, } \underline{ \; pressure \; ensemble}!) \end{array}$

 Fluctuations of ratios(Jeon, Koch), Volume fluctuations irrelevant!

$$\sigma_{N_1/N_2}^2 = \frac{\left\langle (\Delta N_1)^2 \right\rangle}{\left\langle N_1 \right\rangle^2} + \frac{\left\langle (\Delta N_2)^2 \right\rangle}{\left\langle N_2 \right\rangle^2} - 2 \underbrace{\frac{\left\langle \Delta N_1 \Delta N_2 \right\rangle}{\left\langle N_1 \right\rangle \left\langle N_2 \right\rangle}}_{Resonance\ correlation}$$

Points to note

- Fluctuations of ratios have a resonance-derived correlation term!
 - Correlation appears at <u>chemical freeze-out</u>, is <u>not</u> destroyed by rescattering (Undetectable resonances still correlate!)
- Fluctuations of ratios depend on volume!

$$\sigma_{N_1/N_2}^2 \sim \frac{1}{\langle V \rangle T^3}$$

Hence, a fit with fluctuations of ratios needs a "normalization" fit parameter. But fitting ratios and multiplicities $\sim \langle V \rangle T^3$ constrains normalization (along with T and γ_q) tightly.

A big problem: Experimental acceptance

All measurements depend on rapidity, p_T cuts etc. of detector. For fluctuations, these can dominate

Pruneau, Gavin, Voloshin: use dynamical fluctuations

$$\sigma_{dyn} = \sigma - \sigma_{stat}$$
 $Physics+Detector\ effects$
 $Detector\ effects$

 $\sigma_{stat} \sim \frac{1}{\langle N_1 \rangle} + \frac{1}{\langle N_2 \rangle}$ obtained via mixed events Any phase space cuts should produce same fluctuation in mixed event sample, so σ_{dyn} robust against detector acceptance but needs more parameters ("volume") to be described. Can use it in fit, including yields at same centrality as σ_{dyn} . Resonances+acceptance is still a problem!

Current RHIC data (K^-/π^-) and K^+/π^+ fluctuations) does not have this problem, but future K^+/π^- etc. will

Fits at 200 GeV

- $\sigma^{dyn}_{K/\pi}$: Supriya Das et al [STAR] nucl-ex/0503023
 - No common resonances \rightarrow no need to worry about correlation corrections
 - Common resonances would be nice, through! (see predictions)
- Ratios:O. Barannikova et al [STAR] nucl-ex/0403014

NB: All preliminary

- ullet Equilibrium fit yields only o Underestimates σ^{dyn} by many standard deviations
- ullet Equilibrium fit with fluctuations o Too small $\langle V
 angle$ to describe multiplicities
- ullet $\gamma_q > 1 o$ acceptable description of both yields and fluctuations

- ullet Fluctuations do indeed fix tightly γ_q at above 1
- Best fit T at ~ 140 MeV, describes $K^*, \Lambda(1520)$, Σ^* (to 1.5 s.d.)
- All data preliminary! But approach promising!

How much reinteraction between T_{chem} and T_{th} ?

A little/none	A lot			
Who wants it?				
Non-equilibrium	Equilibrium			
Spectra?				
If one <u>includes</u> Resonances	If <u>no</u> resonances			
most hadrons fit $T_{th} = T_{ch}$	$T_{\Xi,\Omega} > T_{th} \sim 100 \; MeV$,			
(Florkowski, Broniowski	(STAR, PHENIX)			
GT,Rafelski,Letessier)	(But resonances <u>there!</u>)			
HBT?				
-Rapid decoupling	Hydro+uRQMD <u>fails!</u>			
-Fits hydro with	Ideas around,			
$T_{th} = T_{ch}(Heinz,Kolb)$	but no solution			
Resonances?				
Hadronic $\rho, \Sigma^*, \Delta, K^*, \Lambda^*, \phi$	$ ho o \mu^+ \mu^-$			
$(\Gamma^{-1} = 1 - 100 \text{ fm})$ Found:	Found broadening			
-no evidence of	(Reinteraction?)			
of p-p/A-A m,Γ modification	(NA60/Rapp, Wambach)			
-Abundances compatible				
or exceeding $\gamma_q>1$ fit $\forall \Gamma$				
(Certainly <u>above</u> T=100 MeV)				
(STAR/GT,Rafelski,Letessier)				

I don't fully understand this, and neither do you!

The illusion of knowledge is worse than ignorance R.Feynmann

First answer: Resonances

$$\frac{K^*}{K}, \frac{\Lambda(1520)}{\Lambda}, \frac{\Xi(1530)}{\Xi}, \dots$$
Sensitive T probe

also susceptible to in-medium re-interactions

Issues to consider:

- Any re-interaction can usually only suppress resonances
 - A few \rightarrow rescattering>regeneration \rightarrow suppression
 - A lot \rightarrow re-equilibration at lower T \rightarrow suppression

But some resonances ρ, Δ, Σ^* appear enhanced w.r.t. 170 MeV , never mind 100 MeV.

ullet In general, rescattering will depend on Γ (dimensional analysis+optical theorem)

$$N_i\left(\frac{m_i}{T},\lambda\right) o F\left[N_i\left(\frac{m_i}{T_{chem}},\lambda_{chem}\right), \Gamma_i \tau^{resc}\right]$$

2 ratios, such as $\frac{\Lambda(1520)}{\Lambda}$ vs $\frac{K^*}{K} \Leftrightarrow T_{chem}$ and τ_{resc}

Rescattering model, GT and Rafelski, PLB, 509 239

$$\frac{dN^*}{dt} = -\Gamma N^*$$

$$\frac{d(N\pi)}{dt} = \Gamma N^* + (N\pi) < \sigma \gamma v > \frac{N_0}{V_0} \left(\frac{R_0}{R_0 + vt}\right)^3$$

- ullet Observable $(N\pi)$ pairs created through decay and destroyed through rescattering
- ullet Density $rac{N_0}{V_0}$ fixed by statistical hadronization, R_0 by particle multiplicity, flow from spectral fits

- People doubt this since we neglected regeneration
- Semi classical approaches such as uRQMD drastically over-estimate n. of regenerated detectable particles by mass-shell assumption

But these are just words (and models!). We still have an ambiguity. Is there a experimental way to <u>rule out</u> either a fast freeze-out or a long reinteracting phase? Yes! Fluctuations

Fluctuations CORRELATED by resonance decays

$$(\Delta Q)^2 = \left\langle (\Delta N)^2 \right\rangle + \left\langle \Delta \overline{N} \right)^2 \right\rangle - 2 \underbrace{\left(\left\langle N \overline{N} \right\rangle - \left\langle N \right\rangle \left\langle \overline{N} \right\rangle \right)}_{\rho \to N \overline{N}}$$

$$\sigma_{K/\pi} = \frac{\left\langle (\Delta K)^2 \right\rangle}{\left\langle K \right\rangle^2} + \frac{\left\langle (\Delta \pi)^2 \right\rangle}{\left\langle \pi \right\rangle^2} - \frac{2}{\left\langle K \right\rangle \left\langle \pi \right\rangle} \underbrace{\left\langle \Delta K \Delta \pi \right\rangle}_{K^* \to K\pi}$$

Correlation, by definition, happens at <u>chemical freeze-out</u>, where <u>multiplicities</u> are fixed! As shown in the second part of the talk, subsequent reinteraction should <u>not</u> change correlation.

(Up to Fluctuation from detailed balance of reactions like $Y^+\pi^+\Leftrightarrow Y^0\pi^0$, but $\sim \left<(\Delta C[f])^2\right>$, where C[f] is Boltzmann collision term, so higher order effect)

As we know from before, however, resonance detection detects resonance abundance at thermal freeze-out!

Yields <u>and</u> fluctuations: Reinteraction (or not) Consider $Y^* \to Y\pi$

 $\sigma_{Y/\pi}$ probes correlation of Y and π from Y^* at chemical freeze-out. (further rescattering/regeneration does not change the correlation.

 Y^*/Y yield probes Y^* at thermal freeze-out (after all rescattering.

So...

- If can fit stable particles <u>and</u> resonances <u>and</u> fluctuations in same fit → no reinteraction
- If Stable particles+ Fluctuations fit gives wrong value for resonances → magnitude of reinteraction

Up until now 200 GeV data has $\sigma^{dyn}_{K^-/\pi^-}, \sigma^{dyn}_{K^+/\pi^+}$ (no resonances)

The next step: K^-/π^+ fluctuations

At RHIC this is simple, since $K^+ \simeq K^-$, $\pi^+ \simeq \pi^-$

$$\left\langle \pi^{-}\right\rangle (\underbrace{\sigma_{dyn}^{K^{-}/\pi^{-}}}_{no\ resonances} - \underbrace{\sigma_{dyn}^{K^{+}/\pi^{-}}}_{K^{*}(892)\to K^{+}\pi^{-}}) \simeq \frac{\left\langle \Delta\pi^{+}\Delta K^{-}\right\rangle}{\left\langle K^{-}\right\rangle} \sim$$

$$\sim \left[\frac{K^*(892)}{K^-}\right]_{chemical\ f.o.} vs \quad \left[\frac{K^*(892)}{K^-}\right]_{thermal\ f.o.}$$

From best fit (non-equilibrium) at $\Delta Y=0.1,~\sigma_{K^+/\pi^-}\simeq 3.10\%$ (vs $\sigma_{K^+/\pi^+}\simeq 3.61\%$ and $K^{*0}(892)/K^-\sim 0.3.$)

If that fits Evidence for sudden freeze-out!

If that does not fit

- $\begin{array}{l} \bullet \quad \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} < \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{theory} \\ \Rightarrow \text{ Evidence for long re-interacting phase} \\ \bullet \quad \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} > \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{theory} \\ = \frac{1}{2} \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} > \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} > \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} \\ = \frac{1}{2} \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} + \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} + \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} + \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} \\ = \frac{1}{2} \left[\sigma_{dyn}^{K^+/\pi^-}\right]_{exp} + \left[\sigma_{dyn}^{K$
- - \Rightarrow Evidence for long re-interacting phase+ K^* Melting

At SPS more complicated because of large chemical potential, but SHARE can fit!

Sudden freeze-out Predictions: $\frac{Y^* \to Y\pi}{Y} vs\sigma_{Y/\pi}$

Probe of statistical formation and post-freeze-out interactions!

If significant discrepancies

- NO sudden freeze-out
- Difference sensitive to $T_{chem} T_{therm}$, $V_{chem} V_{therm}$

Strangeness: a probe for QGP?

Koch, Rafelski, Muller 1982, 1986: QGP kinetics more efficient at producing $s\overline{s}$ than HG kinetics

Faster equilibration time

$$Q_{hadrons} \sim 500 MeV$$
 $Q_{QGP} = 2m_s \sim 200 MeV$

• More $s\overline{s}$ at equilibrium $(\gamma_s > 1 \text{ in HG phase?})$

$$\frac{m_{K,\Lambda,\dots}}{T} \ll \frac{m_s}{T}$$

strange quark coalescence enhances <u>multistrange ANTIbaryons</u> with respect to hadronic production

$$\frac{3m_s}{T} >>>> \frac{m_\Omega}{T}$$

$$Q_{N\overline{N}\to\Omega\overline{\Omega}} <<<<3m_s$$

$$\tau_{p\pi\to\Lambda\pi\to\Xi\pi\to\Omega} <<<<\tau_s^{QGP}$$

Experiment I: The "horn"

A discontinuity is observed $\sqrt{s}/A \sim 8 GeV$ when plotting $\frac{s}{\pi} \left(\frac{K^-}{\pi^-}, \frac{\Lambda}{\pi}, \ldots \right)$ ratios with \sqrt{s} . Nothing similar in p-p collisions

The energy of this discontinuity coincides with a shift in the energy dependence of pion yield ("the kink") and a plateau in slopes ("the plateau")

Are we seeing deconfinement?

We don't know... Looks interesting but many interpretations have been offered

- Original suggestion: Strangeness/entropy change in phase transition (Gazdzicki/Gorenstein. <u>Kink</u> would be evidence of enthropy density increase, step of latent heat)
- Along similar lines: Chemical non-equilibrium from phase transition (Rafelski/Letessier) Large entropy/strangeness content $\rightarrow \gamma_{q,s} > 1$ at deconfinement thhreshold
- Transition from Canonical to Grand-Canonical limits (Cleymans/Redlich)
- Transition from "Baryon-dominated" to "Meson dominated" freeze-out (Cleymans, Redlich, Kampfer, Wheaton
- $K-\pi$ non-equilibrium plus shorter interaction time at high-energy (Tomasik)

It would be great to rule out some of these!

Experiment II: Enhancement, defined as

$$\frac{N^{AA}/N_{part}^{AA}}{N^{pp}/N_{part}^{pp}}$$

is definitely there, as much as ~ 20 for $\overline{\Omega}$. But the interpretation of this has been subject to controversy

When fitting yields a consistent picture emerges

Extra strangeness is due to higher $\gamma_s > 1$ and Volume, as expected if A-A system lived in phase efficient at producing strangeness

good quantitative description, nucl-th/0506044 But not the only one...

QGP enhancement or Canonical suppression

$$\lim_{V \to \infty} \frac{\langle N \rangle_{CE}}{\langle N \rangle_{GCE}} = 1$$

but away from thermodynamic limit→ <u>additional</u> suppression, nonlinear in volume (Hamieh, Tounsi, Becattini, Kera

- Could strangeness enhancement be caused by the fact that p-p is <u>far</u> from the thermodynamic limit, while A-A is <u>close</u> to it? Is p-p particle production <u>also</u> governed by equilibrium statistics?
- Or could we be seeing 2 different production mechanisms, one (p-p) based on hadronic physics, the other one on QGP?
 (Hadronic transport models such as uRQMD can explain, without equilibrium p-p strangeness production but not A-A, e.g. NA57, Eur. Phys. J. C11 1999 79-88)

Energy and centrality dependance studies are increasingly challenging the canonical model

But could A definite falsification be carried out?

Second question: What ensemble most appropriate? Fluctuations: The ensemble-O-meter

The dependance of fluctuations on yields is Ensemble-specific (Begun, Gorenstein, Gazdzicki, Zozulya)

It is <u>very unlikely</u> for the <u>incorrect</u> ensemble to describe <u>both</u> yields <u>and</u> fluctuations with the same parameters

If canonical ensemble is a good description of strangeness in p-p collisions, than it has to describe strangeness fluctuations in p-p collisions with same T,V as yields

Let's try this: RHIC K/π fluctuations! S. Das [STAR], hep-ex/0503023

Canonical ensemble has <u>no hope</u> of fitting preliminary K/π σ , Grand Canonical more or less OK (through need extra boost to fit well, more later).

But SPS $\sigma^{dyn}_{(p+\overline{p})/(\pi^++\pi^-)}$ is a different story!

Over-predicted by Grand canonical statistical model but works with Canonical ensemble for Baryon n. I am still thinking about this...
Why should baryon n. be Canonical and strangeness Grand Canonical?

Part II
Why quantitative studies of fluctuations can be dangerous

Fluctuations are a lot more prone to systematic distortions than yields. If we are going to use them to kill models based on experimental data, we have to be extra careful!

Global conservation laws

Correction coefficient to Grand Canonical esemble (by expanding <u>total</u> enthropy around <u>system</u> number of particles)

$$\zeta_{GC} = \frac{\langle N \rangle}{2} \frac{(\partial^2 S/\partial N^2)_{N_{\text{tot}}}}{(\partial S/\partial N)_{N_{\text{tot}}}} \approx \frac{\eta_{exp}}{2\eta_{tot}} \left[\frac{\sum_{n=0}^{\infty} \lambda^n m^2 T K_2 \left(\frac{nm}{T}\right)}{\ln \lambda \sum_{n=0}^{\infty} \lambda^n m^2 \frac{T}{n} K_2 \left(\frac{nm}{T}\right)} \right]$$

GC description requires $\zeta_{GC} \ll 1 \ (\sim 13\% \ \text{at STAR})$

subproblem III: Corrections to correlations due to limited acceptance

 $ho
ightharpoonup N^+N^-$, but detector has limited acceptance. Need fraction of resonances whose decay products are still within acceptance region. For 2-body decay $ho
ightharpoonup \pi^+\pi^-$ 3 fractions needed:

 b_+ N. of positive decay products still in window

 b_{-} N. of negative decay products still in window

 b_{+-} N. of decay products <u>both</u> in window

Same type of arguments in <u>direct reconstruction</u>, except resonance <u>need not be reconstructible</u>

$$\langle (\Delta Q)^2 \rangle =$$

 $= \left\langle (\Delta N_+)^2(b_+) \right\rangle + \left\langle (\Delta N_-)^2(b_-) \right\rangle - 2b_{+-} \left\langle \Delta N_+ \Delta N_- \right\rangle$ Boost invariance: $b_+ = b_- = 1$ but $b_{+-} < 1$ since p^* of $\rho \to N_+ N_-$ sets intrinsic rapidity scale! To quantitatively extract T, γ_q , interaction time from fluctuations, b_{+-} has to be calculated for each resonance decay

Good news: Fluctuations still valid T_{chem} probe!

In local-thermal equilibrium Reactions destroying correlation and creating correlation balance out (again, up to $\sim \langle (\Delta C[f])^2 \rangle$). If physics <u>local</u>, even partial equilibrium should not destroy this balance. But b_{+-} must still be calculated!

GT, S. Jeon, J. Rafelski, nucl-th/0503026 In a thermal-like source the fraction b_{+-} is given by a simple phase space integral

$$b_{+-} = \int_0^\infty dp_{TR} \int_{-\Delta\eta/2}^{\Delta\eta/2} d\eta_R P(\eta_R, p_{TR}) \Omega_{+-}(\eta_R, p_{TR})$$

$$\Omega_{+-}(\eta_R, p_{TR}) = \int \frac{d^3 p_+^*}{E_+^*} \frac{d^3 p_-^*}{E_-^*} \prod_i \frac{d^3 p_i^*}{E_i^*} \Theta_{+-}$$

where:

$$\Theta_{+-} = \Theta_{\eta_+ - \frac{\Delta\eta}{2}} \Theta_{\eta_+ + \frac{\Delta\eta}{2}} \Theta_{\eta_- - \frac{\Delta\eta}{2}} \Theta_{\eta_- + \frac{\Delta\eta}{2}}$$

$$\frac{dN}{dym_Tdm_T} \propto e^{-b^{-1}m_T}$$

- ullet Parameter b includes both temperature and flow
- It needs to be estimated at <u>chemical freeze-out</u>.
 It's possible since
 - Dependance on \boldsymbol{b} small for most resonance decays
 - Re-interaction tends to increase flow and decrease T, so b not too affected

Work in progress to put these on quantitative footing

Conclusions: Why fluctuations are good!

Fluctuations, taken together with yields, are a powerful tool of model differentiation. They are capable of:

- Falsifying all statistical models
- Determining experimentally the physically appropriate ensemble in the heavy ion regime
- Together with the direct detection of resonances, directly measure the effect of hadronic reinteractions between chemical and thermal freeze-out.
- Quantitatively determine
 - Freeze-out temperature
 - Non-equilibrium occupation parameters

And experimentally distinguish between higher temperature equilibriu and super-cooled non-equilibrium freeze-out.

Conclusions: Issues to keep under control before comparing data to (statistical) models

- Experimental acceptance must be small for GC ensemble to be physically appropriate
- Correction coefficients for all leading resonance decays must be estimated
- Volume fluctuations must be kept under control (by choice of observables, fitting, or ansatz such as KNO).

Outlook:

SHAREv2.0

 $http://www.physics.arizona.edu/{\sim}torrieri/SHARE/share.html$

Be as rich in insights as this (10)?

