

Quark Stars: Features and Findings

Prashanth Jaikumar

05/17/06

Argonne National Laboratory

Comparison to neutron stars

Comparison to neutron stars

Observational signatures

Comparison to neutron stars

Observational signatures

Connection with heavy-ions

Hybrid Stars: Neutron stars with quark core Bare Quark Stars: Absence of thick nuclear crust

Equation of state

$$P = \frac{1}{3}(\epsilon - 4B) \leftarrow EOS(\alpha_s = 0, m_s = 0)$$

TOV equations:

$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r), \quad \frac{dP(r)}{dr} = -\frac{GM(r)\epsilon(r)}{r^2}$$

Equation of state

. - p.3/11

Observational signals I

Can We Detect Quark Matter inside Neutron Stars?

Observational signals I

Can We Detect Quark Matter inside Neutron Stars?

Equation of state different.. overlap in observed region.

Moment of inertia different.. low odds of detection.

Observational signals I

Can We Detect Quark Matter inside Neutron Stars?

Equation of state different.. overlap in observed region.

Moment of inertia different.. low odds of detection.

As at RHIC, we may need a combination of signatures

Observational Signals II

 e^+e^- Pair creation at the Star's Surface

..due to superstrong Electric field at surface!

(Usov et al, Astrophys. J. 609 (2004))

$$l_{e} \sim 10^{3} \text{fm}, \quad E \sim 5 \times 10^{16} \text{ V cm}^{-1}$$
$$E_{cr} = \frac{m_{e}^{2} c^{3}}{e \hbar} \simeq 1.3 \times 10^{16} \text{ V cm}^{-1}$$
$$R_{\pm} \simeq 1.7 \times 10^{50} \left(\frac{E}{E_{cr}}\right)^{2} \text{ cm}^{-3} \text{ s}^{-1}$$

Observational Signals II

 e^+e^- Pair creation at the Star's Surface

..due to superstrong Electric field at surface!

(Usov et al, Astrophys. J. 609 (2004))

E E e⁺ e⁺

$$\frac{l_e}{E_{\rm cr}} \sim 10^3 {\rm fm}, \quad E \sim 5 \times 10^{16} {\rm V \ cm^{-1}}$$

$$\frac{m_e^2 c^3}{e\hbar} \simeq 1.3 \times 10^{16} {\rm V \ cm^{-1}}$$

$$R_{\pm} \simeq 1.7 \times 10^{50} \left(\frac{E}{E_{\rm cr}}\right)^2 {\rm cm^{-3} \ s^{-1}}$$

 e^+e^- annihilation can lead to super-Eddington Photon Luminosities.

Surface photon emission

emission is controlled by surface layers.

Mean energy of photons is $\sim MeV$ (Gamma-rays)

Mixed phase crust

$$\epsilon_{s+C} + G_M \le G_H$$

Surface tension of quark droplet:

$$\sigma \leq 36 \left(\frac{m_s}{150 \text{ MeV}}\right)^3 \frac{m_s}{\mu} \text{ MeV/fm}^2$$

Mixed phase crust

$$\epsilon_{s+C} + G_M \le G_H$$

Surface tension of quark droplet:

$$\sigma \leq 36 \left(\frac{m_s}{150 \text{ MeV}}\right)^3 \frac{m_s}{\mu} \text{ MeV/fm}^2$$

Mixed phase

$$\mu \simeq 300 \text{ MeV}, m_s = 150 \text{ MeV}$$

Homogeneous phase

$$\mu\simeq 300$$
 MeV, $m_s=130$ MeV

A surface of quark nuggets?

mixed phase: Quark nuggets + Electron sea

 $\Delta R \simeq 0.1 \text{ km}$, Opt. nugget size (σ_T, μ_q) : $\approx 8 \text{ fm}$ 48 r₀=8.25 fm 46 (10⁻⁴ MeV/fm³) 0.8 $\phi(r)/\phi(0)$ 0.6 44 $n_{u}(r)/n_{u}(0)$ $n_{d}(r)/n_{d}(0)$ 0.4 $n_{a}(r)/n_{a}(0)$ $n_{a}(r)/n_{a}(0)$ 42 0.2 ပ္ မ[ိ] 40 0.1 10 100 r (fm) 38^L 5 6 9 10 11 12 7 8 r_0 (fm)

Help from heavy-ion collisions

^{10⁻⁴} ^{10⁻⁶} ^{10²} ^{10²} ^{10²} ^{10²} ^{10²} ^{10²}

Strangelet search at CERN-SPS $\leq 10^{-10}$ strangelets/collision created by coalescence Strangelet search at RHIC $\leq 10^{-6}$ strangelets/collision <u>distillation of QGP?</u>

Strange Quark Matter at high density can be stable –

– challenging task to confirm this!

Strange Quark Matter at high density can be stable –
 challenging task to confirm this!

Neutron stars may contain such matter but may remain hidden inside neutron star cores

Strange Quark Matter at high density can be stable –
 challenging task to confirm this!

- Neutron stars may contain such matter but may remain hidden inside neutron star cores
- A Bare Quark Star has a distinctive surface; it cools also by emitting photons – spectral identification by INTEGRAL satellite possible

- Strange Quark Matter at high density can be stable –
 challenging task to confirm this!
- Neutron stars may contain such matter but may remain hidden inside neutron star cores
- A Bare Quark Star has a distinctive surface; it cools also by emitting photons – spectral identification by INTEGRAL satellite possible
- Quark stars can have a crust we need accurate determinations of QCD parameters at high density

- Strange Quark Matter at high density can be stable –
 challenging task to confirm this!
- Neutron stars may contain such matter but may remain hidden inside neutron star cores
- A Bare Quark Star has a distinctive surface; it cools also by emitting photons – spectral identification by INTEGRAL satellite possible
- Quark stars can have a crust we need accurate determinations of QCD parameters at high density
- **No** "smoking gun" for quark stars so far, but not ruled out yet!

Collaborators

Sanjay Reddy Los Alamos, USA

Rachid Ouyed University of Calgary, Canada

Craig Roberts

Argonne National Laboratory, USA

Madappa Prakash

Ohio University, USA