SIGNATURES OF MACH SHOCKS AT RHIC

(. . . and whatever else is in the angular high p_T correlations) Thorsten Renk

in collaboration with Kari J. Eskola and Jörg Ruppert

INTRODUCTION

- Jets in p-p collisions. . .
- . . . and their dis- (re-)appearance in A-A ANGULAR CORRELATIONS IN THE MODEL
- low p_T Mach cones
- high p_T punchthrough CONCLUSIONS

HARD P-P COLLISIONS

$$d\sigma^{NN \to h+X} = \sum_{fijk} f_{i/N}(x_1, Q^2) \otimes f_{j/N}(x_2, Q^2) \otimes \hat{\sigma}_{ij \to f+k} \otimes D_{f \to h}^{vac}(z, \mu_f^2)$$

HARD AU-AU COLLISIONS

$$d\sigma_{med}^{AA \to \pi+X} = \sum_{f} d\sigma_{vac}^{AA \to f+X} \otimes P_{f}(\Delta E) \otimes D_{f \to \pi}^{vac}(z, \mu_{F}^{2})$$
$$d\sigma_{vac}^{AA \to f+X} = \sum_{ijk} f_{i/A}(x_{1}, Q^{2}) \otimes f_{j/A}(x_{2}, Q^{2}) \otimes \hat{\sigma}_{ij \to f+k}$$

EVIDENCE I: NUCLEAR SUPPRESSION FACTOR

T. R. and J. Ruppert, Phys. Rev. C 72 (2005) 044901

EVIDENCE II: ANGULAR CORRELATIONS

For hard > 6 GeV trigger and semi-hard ~ 1 GeV associate hadrons:

- NLO fragmentation builds near side jet cone
- acoplanarity (intrinsic k_T/NLO pQCD) widens away side cone in p-p and p-A
- energy loss causes away side cone to disappear in A-A

EVIDENCE III: ANGULAR CORRELATIONS

For semi-hard $\sim 2.5~{\rm GeV}$ trigger and semi-hard $\sim 1~{\rm GeV}$ associate hadrons:

- NLO fragmentation builds near side jet cone
- central collisions: dip at expected position of away side jet
- position of correlation maximum consistent with Mach shock
- S. S. Adler $\mathit{et al.}$ [PHENIX Collaboration], nucl-ex/0507004

EVIDENCE IV: ANGULAR CORRELATIONS

For hard > 8 GeV trigger and hard > 4 GeV associate hadrons:

- clear jet cones with vacuum width
- \bullet near side LO fragmentation: \rightarrow trigger
- \bullet away side LO fragmentation: \rightarrow signal
- jet quenching: change in the yield per trigger of the away side peak

How can we understand this pattern?

J. Adams [STAR Collaboration], nucl-ex/0604018.

A TENTATIVE PICTURE

- strength and angle of Mach correlations: property of the bulk (fluid) medium
- \bullet strength and angle of near side, dijet: property of the hard parton + fragmentation
- different scaling with $p_{trigger}$ (\Rightarrow apparent absence of cones for hard trigger)

Mach structures cannot be seen beyond the validity of the hydro description, regardless of trigger energy.

THEORY: ENERGY LOSS INTO THE MEDIUM

Energy loss probability (Wiedemann/Salgado): $P(\Delta_E) = P(\omega_c, (\hat{q}L))$

$$\omega_c(\mathbf{r_0},\phi) = \int_0^\tau d\xi \xi \hat{q}(\xi) \quad \text{and} \quad (\hat{q}L)(\mathbf{r_0},\phi) = \int_0^\tau d\xi \hat{q}(\xi)$$

$$\hat{q} = c\tilde{\epsilon}^{3/4} \left(p(\epsilon) + [\epsilon + p(\epsilon)] \frac{\beta_{\perp}^2}{1 - \beta_{\perp}^2} \right) \quad \text{and} \quad \langle \Delta E \rangle = \int_0^\infty P(\Delta E) \Delta E d\Delta E$$

Assume fraction f of lost energy $\langle \Delta E \rangle$ excites shockwave with dispersion relation

$$E = c_s p$$
 with $c_s = \partial p(T) / \partial \epsilon(T)$ from EOS $\Rightarrow \phi = \arccos \frac{\int_{\tau_E}^{\tau} c_s(\tau) d\tau}{(\tau - \tau_E)}$

Sound propagates in the (locally moving) fluid

 \Rightarrow boost with local flow rapidity

C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68, 014008 (2003)

TRANSVERSE FLOW

Strong distortion in position Measurement is made in momentum space: space:

At 1 GeV, a Mach signal only appears if shockwave and flow are aligned

T. R. and J. Ruppert, Phys. Rev. C 73, 011901 (2006)

MONTE CARLO SAMPLING OF TRIGGER CONDITIONS

Near side:

- hard parton energy (and type)
- \Rightarrow parton spectra from VNI/BMS PCM (semi-hard trigger) or pQCD (hard trigger)
- \Rightarrow vertex sampling from nuclear overlap
- \Rightarrow probabilistic ΔE dependent on in-medium path
- \rightarrow check against near side trigger threshold

Away side:

- intrinsic k_T
- \Rightarrow chosen such that d-Au width of far side peak is reproduced
- \Rightarrow far side probabilistic ΔE dependent on in-medium path
- \Rightarrow near and far side (N)LO fragmentation
- \rightarrow good description of hard dihadron yields (alas, another talk. . .)

Contains all information on trigger bias, pathlength distribution, nuclear density. . .

RAPIDITY STRUCTURE OF THE CONE

Problem: If trigger is at midrapidity, P(y) on the away side extends from -2 to 2

 \Rightarrow Why would there be any angular structure left?

RAPIDITY STRUCTURE OF THE CONE

 \bullet shock wave propagates with $c_s(T)$ relative to the medium \Rightarrow spatial position as solution of

$$\frac{dz}{dt} = \frac{u(z, R, t) + c_s(T(z, R, t))}{1 + u(z, R, t)c_s(T(z, R, t))} \Big|_{z=z(t)}$$

 \Rightarrow longitudinal flow field at z_{final} determines boost in momentum space

Significant elongation of the ring (\rightarrow ellipse) in rapidity space

measurement detects momentum transverse to the beam axis
⇒ no contribution for the longitudinal component of the shockwave ring

 \Rightarrow The Mach angle remains observable under these conditions

Not so if signal doesn't propagate in the medium! Serious problem for jet bending, Cherenkov emission...!

The average angle is sensitive to the speed of sound

T. R. and J. Ruppert, Phys. Rev. C 73, 011901 (2006)

For 5 GeV energy loss from a hard parton, spectral change as a function of angle:

SUMMARY

Angular hadron correlations for (semi-) hard triggers emerge naturally from

- excitation of hydrodynamical shockwaves
- hard punchthrough + fragmentation

with different excitation function for rising trigger energy!

Due to P(y) of the away side parton: Large angle correlations only visible if

• signal moves relative to flowing medium

 \Rightarrow problem for other explanations!

Mach shocks survive challenges posed by the data so far \Rightarrow direct access to c_s